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Hub-dominant matrices are natural extensions of hub matrices. In this
article we study eigengaps of the Gram matrix associated with a
hub-dominant matrix. A class of hub-dominant matrices is then
constructed by using equiangular tight frames.
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matrices

AMS Subject Classifications: 15A42; 65T60; 65F15

1. Introduction

The notion of hub matrices was first proposed by Kung and Suter in [1]. A matrix is
called a hub matrix if, without loss of generality, the Euclidean norm of its last
column (called hub column) is greater than that of the rest columns (non-hub
columns) and, in addition, all non-hub columns are orthogonal to each other with
respect to the Euclidean inner product. The framework of hub matrices can be used
to describe a variety of wireless communication systems. For example, the hub
matrix theory was applied to beamforming MIMO communication systems in [1].
The eigenstructure of the Gram matrices of the corresponding hub matrices was
exploited to analyse the performance and capacity of the systems. Here, the
eigenstructure of a positive semi-definite symmetric matrix refers to the ratio of its
two leading eigenvalues. One mathematical issue in hub matrix theory is to infer the
eigenstructure of the Gram matrix of a given hub matrix through the Euclidean
norms of all columns of the hub matrix and the Euclidean inner products between
the non-hub columns and the hub column. For instance, the eigenstructure of the
Gram matrix of a hub matrix was characterized by the hub column and a non-hub
column with the largest Euclidean norm in [1]. In our recent work [2], an improved
estimate on the eigenstructure has been achieved by fully exploiting information
from the hub column and all non-hub columns.

The Gram matrix of a hub matrix is a so-called arrowhead matrix whose all
principal minors except itself are diagonal matrices. In other words, the Gram
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matrix can be obtained by bordering a diagonal matrix with one column from

the bottom and one row from the right. This diagonal matrix can be extended

to other types of matrices such as block diagonal matrices and diagonal

dominant matrices. Actually, when the diagonal matrix is replaced by a diagonal

dominant matrix, the corresponding hub matrix becomes a hub-dominant matrix

(see [1]). Hub-dominant matrices can be used in areas such as distributed

beamforming and power control in wireless ad hoc networks [1]. The

eigenstructure of the Gram matrix of a hub-dominant matrix has been studied

in [1]. In this article, we will improve the estimate of the eigenstructure based on

our recent work [2]. We will also construct and analyse a class of hub-dominant

matrices via equiangular tight frames.
This article is organized as follows. In Section 2, we give the definition of

hub-dominant matrices and review the result on the lower and upper bounds of

the Gram matrix of a hub-dominant matrix in [1]. Few remarks on the result

are made to motivate our current work. In Section 3 we develop some useful

lemmas for estimating eigenvalues of positive semi-definite symmetric matrices.

In Section 4, we present our new results on the lower and upper bounds for the

eigengap of the Gram matrix of a hub-dominant matrix. The improvement of

the bounds over the result given in [1] is discussed. In Section 5, we construct

a class of hub-dominant matrices through equiangular tight frames. Our

conclusion is drawn in Section 6.

2. Hub and hub-dominant matrices

In the original work of [1], the definition of hub matrices was introduced first, and

then extended to a general case of hub-dominant matrices. The present presentation

differs in that. We first give the definition of hub-dominant matrices and then treat

a hub matrix as a special kind of hub-dominant matrix.

Definition 1 A matrix A2R
n�m is called a candidate-hub-dominant matrix if its

first m� 1 columns ai, i¼ 1,. . ., m� 1, satisfy the following conditions:

�kaik
2 �

Xm�1
j¼1

jhai, ajij � �kaik
2 for i ¼ 1, . . . ,m� 1, ð1Þ

where �� 1 and �� 2. If, in addition, the last column has its Euclidean norm greater

than or equal to that of any other column, then A is called a hub-dominant matrix

and the last column is called the hub column.

For a given hub-dominant matrix A, its Gram matrix is denoted by Q :¼AtA

and called the system matrix associated with the matrix A. Assume that

A¼ [a1 a2 . . . am�1 am] is a hub-dominant matrix. The corresponding system matrix

Q is partitioned into a form as follows:

Q ¼ AtA ¼
D c

ct b

� �
, ð2Þ

1228 L. Shen and B.W. Suter

D
ow

nl
oa

de
d 

by
 [

L
ix

in
 S

he
n]

 a
t 0

4:
58

 0
8 

Ju
ly

 2
01

1 

3



where the matrix D, the vector c and the real number b in (2) are

D ¼

ka1k
2 ha1, a2i � � � ha1, am�1i

ha2, a1i ka2k
2 � � � ha2, am�1i

..

. ..
. ..

. ..
.

ham�1, a1i ham�1, a2i � � � kam�1k
2

2
6664

3
7775, c ¼

ha1, ami

ha2, ami

..

.

ham�1, ami

2
6664

3
7775, b ¼ kamk

2,

ð3Þ

respectively. The matrix D represents the correlation among the non-hub nodes.

The inequality (1) implies D being a diagonally dominant matrix. This is the reason

why A is named a diagonally dominant hub matrix. The vector c reflects the

correlation between the non-hub nodes and the hub node.
When the parameters � and � in (1) are identical and both equal to 1, we havePm�1

j¼1 jhai, ajij ¼ kaik
2, which imply that

hai, aji ¼ 0 for all 1 � i5 j � m� 1:

This means that all non-hub columns are orthogonal to each other with respect to

the Euclidean inner product. In such case, the matrix D in (2) and (3) reduces to a

diagonal matrix with ka1k
2, ka1k

2, . . . , kam�1k
2 as its diagonal entries. The matrix A is

called a hub matrix [1] and the corresponding Q is an arrowhead matrix [3,4].
It is of particular interest in estimating the eigenvalues of the system matrix

associated with a hub-dominant matrix, mostly, the ratio of leading two eigenvalues

of the system matrix via the elements of the hub-dominant matrix [1]. To this end, we

introduce definitions of hub-gaps for a hub-dominant matrix and eigengaps for the

associated system matrix.

Definition 2 (hub-gap and eigengap) Let A2R
n�m be a matrix with its columns

denoted by a1, . . . , am arranged in increasing order. For i¼ 1, . . . ,m� 1, the i-th

hub-gap of A is defined to be

HGiðAÞ :¼
kam�iþ1k

2

kam�ik
2
:

Let Q be the associated system matrix with eigenvalues denoted by �1, . . . , �m with

�1� � � � � �m. For i¼ 1, . . . ,m� 1, the i-th eigengap of Q is defined to be

EGiðQÞ :¼
�m�iþ1
�m�i

:

With this notation, an estimate of the eigengap of the system matrix Q was given

in [1] in terms of the hub-gaps of the corresponding hub-dominant matrix. We state

the estimate in the following theorem.

THEOREM 1 [7] Let A2R
n�m be a hub-dominant matrix with its columns denoted by

a1, a2, . . . , am arranged in increasing order. Let Q¼AtA2R
m�m be a corresponding

system matrix with its eigenvalues denoted by �1, . . . , �m with �1� � � � � �m. Let dii and
�i denote the diagonal entry and the sum of the magnitudes of off-diagonal entries,

respectively, in row i of D for i¼ 1, . . . ,m� 1. Then

1

2
HG1ðAÞ � EG1ðQÞ �

dðm�1Þðm�1Þ þ bþ
Pm�2

i¼1 �i
dðm�2Þðm�2Þ � �m�2

: ð4Þ

We make three remarks on this theorem.
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Remark 1 We would like to take this opportunity to emphasize that the difference
d(m�2)(m�2)� �m�2 in the denominator of the upper bound shown in (4) should
be understood as the second largest number in the sequence d11� �1,
d22� �2, . . . , d(m�1)(m�1)� �m�1.

Remark 2 The expression in (4) fails to give an upper bound of EG1(Q) when
d(m�2)(m�2)� �m�2¼ 0.

Remark 3 When A is a hub matrix, (4) becomes

1

2
HG1ðAÞ � EG1ðQÞ � ðHG1ðAÞ þ 1ÞHG2ðAÞ:

In comparison to the lower and upper bounds of EG1(Q) given by Theorem 4 in [1],
we see that the upper bound of EG1(Q) in [1] is the same as the one in the above
inequality, but the lower bound doubles. In this sense there is room to further
improve the lower bound of EG1(Q) in (4).

These remarks partially motivated us to conduct our current work in this article.
Since the eigengap EG1(Q) is defined as the ratio of leading two largest eigenvalues
of Q, it is desirable to estimate the leading two largest eigenvalues of Q in terms of
the entries of the associated hub-dominant matrix A with a high accuracy in order
to have tighter lower and upper bounds of EG1(Q). This will be our main task in the
next section.

3. Some lemmas

Let A be a hub-dominant matrix and Q be the associated Gram matrix or the system
matrix. The matrix Q has a form of (2), which is partitioned according to the
non-hub columns and the hub column of A. We will use this structure of Q to
estimate its eigenvalues.

When A is a hub matrix, Q is an arrowhead matrix. The Cauchy interlacing
theorem is usually adopted to estimate the eigenvalues of an arrowhead matrix [5].
In [2], we provide new estimates for the eigenvalues of arrowhead matrices. It was
proved there that the estimated lower and upper bounds of the eigenvalues are
tighter than that by using the Cauchy interlacing theorem. In the meanwhile, it was
numerically examined that the estimates for the least and largest eigenvalues are
better than that based on a method in [6]. Because of this, we propose to apply the
results in [2] for new estimates of the eigenvalues of Q when A is a hub-dominant
matrix.

The approach we adopt is motivated from the structure of Q in (2). By looking
at it, when the submatrix D in Q is diagonal, Q is an arrowhead matrix. Therefore
the results in [2] can be directly applicable in such situation. Fortunately, if
the submatrix D is not a diagonal, D is unitarily similar to a diagonal matrix �, i.e.
there exists an orthogonal matrix U such that

D ¼ Ut�U,

where �¼ diag(�1,�2, . . . ,�m�1) with �1��2� � � � ��m�1. Hence, we have

� z

zt b

� �
¼

U

1

� �
D c

ct b

� �
Ut

1

� �

1230 L. Shen and B.W. Suter
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where z¼Uc. Therefore, the eigenvalues of the matrix Q are the same as the

arrowhead matrix

B :¼
� z

zt b

� �
: ð5Þ

We call B an arrowhead matrix induced from the system matrix Q.
In what follows, the eigenvalues �i of a symmetric matrix P2R

n�n are always

ordered such that �1� �2� � � � � �n. When the dependence of the eigenvalues on the

matrix P needs to be determined, we simply write �1(P)� �2(P)� � � � � �n(P) instead.
Next, we present the bounds for the eigenvalues of the arrowhead matrix B

developed in [2].

LEMMA 1 [11] Let B2R
m�m be an arrowhead matrix in (5) having

�¼ diag(�1, . . . ,�m�1) with �1��2� � � � ��m�1� b. Then

�j ðBÞ �

min �1, f�
�m�1

b

� �� �
if j ¼ 1;

�j if 2 � j � m� 1;

fþ
�m�1

b

� �
if j ¼ m

8><
>: ð6Þ

and

�j ðBÞ �

f�
�1

b

� �
if j ¼ 1;

max �j�1, f�
�j

b

� �� �
if 2 � j � m� 1;

fþ
�1

b

� �
if j ¼ m,

8><
>: ð7Þ

where

f�ð�Þ ¼ �bþ
1

2
ð1� �Þb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ2b2 þ 4kzk2

q	 

:

As a direct application of Lemma 1, we have the following result on the bounds

of the eigengap of the system matrix Q.

THEOREM 2 Let A2R
n�m be a hub-dominant matrix with its columns denoted by

a1, . . . , am arranged in increasing order. Let Q¼AtA2R
m�m in (2) be the

corresponding system matrix and B in (5) be the arrowhead matrix induced from Q.

Then we have

fþð�1=bÞ

�m�1
� EG1ðQÞ �

fþð�m�1=bÞ

maxf�m�2, f�ð�m�1=bÞg
, ð8Þ

where �1,�2, . . . ,�m�1 arranged in increasing order are the diagonal elements of the

diagonal matrix � in B.

COROLLARY 1 Let A2R
n�m be a hub-dominant matrix with its columns denoted by

a1, . . . , am and arranged in increasing order. Suppose that all non-hub columns a1,

a2, . . . , am�1 are orthogonal to each other with respect to the Euclidean inner product.

Then the lower and upper bounds of EG1(Q) in Theorem 2 are sharper than those in

Theorem 1.

Applicable Analysis 1231

D
ow

nl
oa

de
d 

by
 [

L
ix

in
 S

he
n]

 a
t 0

4:
58

 0
8 

Ju
ly

 2
01

1 

6



Proof When all non-hub columns a1, a2, . . . , am�1 are orthogonal to each other with

respect to the Euclidean inner product, we know that

�i ¼ dii ¼ kaiik
2, for i ¼ 1, . . . ,m� 1:

In this case,

fþð�1=bÞ

�m�1
¼
ðbþ d11Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� d11Þ

2
þ 4kck2

q
2dðm�1Þðm�1Þ

�
b

dðm�1Þðm�1Þ
¼ HG1ðAÞ,

that is, the lower bound of EG1(Q) in Theorem 2 is sharper than that in Theorem 1.
To show the upper bound of EG1(Q) in Theorem 2 is sharper than that in

Theorem 1, i.e.

fþðdðm�1Þðm�1Þ=bÞ

maxfdðm�1Þðm�1Þ, f�ðdðm�1Þðm�1Þ=bÞg
�

dðm�1Þðm�1Þ þ b

dðm�1Þðm�1Þ
,

we need to show that

fþðdðm�1Þðm�1Þ=bÞ � dðm�1Þðm�1Þ þ b: ð9Þ

It is equivalent to showing

kck2 � dðm�1Þðm�1Þb:

The above inequality is true because

kck2 ¼
Xm�1
i¼1

jhai, amij
2 ¼

Xm�1
i¼1

kaik
2

kaik
2
hai, amij

2

� kam�1k
2
Xm�1
i¼1

1

kaik
2
hai, amij

2

� kam�1k
2kamk

2 ¼ dðm�1Þðm�1Þb:

This completes the proof. g

From Corollary 1, we have tighter bounds for the eigengap EG1(Q) than that in

Theorem 1 when A is a hub matrix. For A being a hub-dominant matrix, the bounds

given in Theorem 2 involve the smallest eigenvalue �1 and two largest eigenvalues

�m�2 and �m�1 of D which are not available in general. Hence, we need to estimate

these eigenvalues in terms of entries of the associated hub-dominant matrix A

explicitly. To this end, for the eigenvalues �1 and �m�2, we need to give lower bounds

of them; for the eigenvalue �m�1, we need both lower and upper bounds.
The following lemmas are useful in estimating eigenvalues �1, �m�2 and �m�1

of D.

LEMMA 2 [4, p. 191] Let P2R
n�n be a symmetric matrix, let r be an integer with

1� r� n, and let Pr denote any r� r principal submatrix of P (obtaining by deleting

n� r rows and the corresponding columns from P). For each integer k such that

1� k� r we have

�kðPÞ � �kðPrÞ � �kþn�rðPÞ:

1232 L. Shen and B.W. Suter
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This lemma shows that the eigenvalues of P can be estimated through eigenvalues
of its principal submatrices. To make this lemma useful, the key is to identify
principal submatrices of P whose eigenvalues are easily computed. Clearly, we can
explicitly calculate the eigenvalues of the principal submatrices Pr for r¼ 1 and 2.
This leads to the following result.

LEMMA 3 Let P2R
n�n be a positive semi-definite symmetric matrix. Then

(1) �1ðPÞ � min1�i�n pii and �nðPÞ � max1�i�n pii,

(2) �n�1ðPÞ � max1�i5j�n
1
2 ðð pii þ pjjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii � pjjÞ

2
þ 4p2ij

q
Þ,

(3) �nðPÞ � max1�i5j�n
1
2 ðð pii þ pjjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii � pjjÞ

2
þ 4p2ij

q
Þ:

Proof The first item is a well-known result. It is a direct consequence of Lemma 2
by setting r¼ 1. To prove the results in the second and third items, we set r¼ 2 in
Lemma 2. The corresponding matrix P2 has the following form:

P2 ¼
aii aij
aji ajj

� �
,

where i and j are two distinct integers between 1 and n. Notice that all diagonal
elements of P are non-negative. The smallest and largest eigenvalues of P2 are

1

2
ð pii þ pjjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii � pjjÞ

2
þ 4p2ij

q	 

and

1

2
ð pii þ pjjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii þ pjjÞ

2
þ 4p2ij

q	 

,

respectively. The results stated in items 2 and 3 are followed from Lemma 2. g

Since 1
2 ðð pii þ pjjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii � pjjÞ

2
þ 4p2ij

q
Þ � maxfpii, pjjg, the lower bound for �n(P)

from item 3 of Lemma 3 is tighter than that from item 1.

LEMMA 4 Let P2R
n�n be a diagonally dominant and positive semi-definite

symmetric matrix. Let us denote �i the sum of the magnitudes of the off-diagonal
elements of the i-th row of P, i.e. �i ¼

Pn
j¼1,j6¼i j pijj. Let us define

X :¼ diagð p11 � �1, p22 � �2, . . . , pnn � �nÞ:

Then

�iðPÞ � �iðXÞ ð10Þ

for i¼ 1, 2, . . . , n.

Proof Since P is a diagonally dominant and positive semi-definite symmetric
matrix, then all diagonal entries of X are non-negative. Define

Y :¼ P� X:

Clearly, Y is a diagonally dominant symmetric matrix and its diagonal elements are
�i which are non-negative for i¼ 1, 2, . . . , n. Therefore, Y is a diagonally dominant
and positive semi-definite symmetric matrix, hence all eigenvalues of Y are
non-negative. Since P is a sum of the diagonal matrix X and the non-negative
symmetric matrix Y, Weyl’s monotonicity theorem (see, e.g. [7, page 63] or
[4, page 182]) implies (10). g
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Both Lemmas 3 and 4 provide a lower bound for �n(P). Since

maxfpii � �i: i ¼ 1, 2, . . . , ng � pnn �
1

2
ð pnn þ pjjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pnn � pjjÞ

2
þ 4p2nj

q	 

for all j¼ 1, . . . , n, we choose the lower bound of �n(P) provided by Lemma 3.

Regarding the lower bound of �n�1(P) based on Lemmas 3 and 4, we have the

following result.

LEMMA 5 Let P2R
n�n be a symmetric diagonally dominant and positive semi-

definite matrix. Let us denote �i the sum of the magnitudes of the off-diagonal elements

of the i-th row of P, i.e. �i ¼
Pn

j¼1, j6¼i j pijj. Then the lower bound of �n�1(P) given in

Lemma 3 is tighter than that in Lemma 4.

Proof We assume that the diagonal entries pii of P have been arranged in increasing

order. We consider two different cases. In the first case, we assume that

pnn � �n ¼ maxf pii � �i: i ¼ 1, 2, . . . , ng,

then

max
1�i5j�n

1

2
ð pii þ pjjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pii � pjjÞ

2
þ 4p2ij

q	 

� max

1�i5j�n
ð pii � j pijjÞ � max

1�i�n�1
ð pii � �iÞ,

where max1�i�n�1( pii� �i) is the second largest number among p11� �1,
p22� �2, . . . , pnn� �n, therefore, is the exact lower bound of �n�1(P) provided by

Lemma 4.
In the second case, we assume that for an integer 1� j0� n� 1,

pj0j0 � �j0 ¼ maxf pii � �i: i ¼ 1, 2, . . . , ng,

then

max
1�i5j�n

1

2
ðpiiþpjjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpii�pjjÞ

2
þ4p2ij

q	 

� max

1�i5j�j0þ1

1

2
ðpiiþpjjÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpii�pjjÞ

2
þ4p2ij

q	 

� pj0 j0 �jpj0ð j0þ1Þj

� pj0 j0 ��j0 ¼maxfpii��i: i¼ 1,2, . . . ,ng:

From both cases, we conclude that the statement of this lemma is true. g

LEMMA 6 Let P2R
n�n be a diagonally dominant and positive semi-definite

symmetric matrix. Then

�nðPÞ � max
1�i�n

Xn
j¼1

j pijj � 2 max
1�i�n
j piij:

Proof Note that all eigenvalues of the positive semi-definite symmetric matrix P are

real and non-negative. The first inequality is due to Gershgorin’s disc theorem while

the second inequality is due to P being a diagonally dominant matrix. g

LEMMA 7 Let Q2R
m�m be a positive semi-definite symmetric matrix. We partition

Q as follows:

Q ¼
D c

ct b

� �
,
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where D2R
(m�1)�(m�1) and c2R

m�1. Let us denote �i the sum of the magnitudes of the
off-diagonal elements of the i-th row of D, i.e. �i :¼

Pm�1
j¼1,j6¼i jdijj, where dij is the (i, j)-th

entry of D (of Q as well ). Assume that D is a diagonally dominant matrix, then

�mðQÞ � bþ max
1�i�m�1

fdii þ �ig:

Proof As we know, from the beginning of this section, the matrix Q can be
converted to an arrowhead matrix B given in (5) by a similarity transformation.
Hence, the eigenvalues of Q and B are the same. Further, by the fact that the trace of
a matrix is equal to the sum of its eigenvalues, we have

�1 þ �2 þ � � � þ �m�1 þ b ¼ �1ðQÞ þ �2ðQÞ þ � � � þ �mðQÞ, ð11Þ

where �1,�2, . . . ,�m�1 arranged in increasing order are the eigenvalues of the
diagonal matrix � in (5).

Applying the Cauchy interlacing theorem for B yields

�jðQÞ � �j � �jþ1ðQÞ ð12Þ

for j¼ 1, 2, . . . ,m� 1. Applying (12) to (11) leads to

�1 þ �2 þ � � � þ �m�1 þ b � �1ðQÞ þ �1 þ � � � þ �m�2 þ �mðQÞ:

Hence,

�mðQÞ � bþ �m�1 � �1ðQÞ:

Since �1(Q)� 0 and D is a diagonally dominant matrix, the result of this lemma
follows from the above inequality together with Lemma 6. g

4. Lower and upper bounds of the eigengap EG1(Q)

In this section, we utilize the results given in the previous section to provide new
lower and upper bounds for EG1(Q), where Q is the system matrix associated with a
hub-dominant matrix A. We further show that the new bounds are tighter than that
provided by Theorem 1.

THEOREM 3 Let A2R
n�m be the hub-dominant matrix having a1, a2, . . . , am as its

columns with ka1k� ka2k� � � � � kamk. Let Q¼AtA2R
m�m in (2) be the correspond-

ing system matrix. Let us denote �i :¼
Pm�1

j¼1, j6¼i jdijj as the sum of the magnitudes of the
off-diagonal elements of the i-th row of D ¼ ½dij�

m�1
i, j¼1. Then

fþðs=bÞ

max1�i�m�1
Pm�1

j¼1 jdijj
� EG1ðQÞ, ð13Þ

where s¼min{dii� �i: i¼ 1, . . . ,m� 1}.

Proof Let B in (5) be the reduced arrowhead matrix of Q and let �1,�2, . . . ,�m�1

be the diagonal elements of the diagonal matrix � in B which have been arranged in
increasing order. From Theorem 2, we have

EG1ðQÞ �
fþð�1=bÞ

�m�1
:
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By Lemma 4, we have �1� s. Since fþ is an increasing function, we get
fþ(�1/b)� fþ(s/b). By Lemma 6, we have �m�1 � max1�i�m�1

Pm�1
j¼1 jdijj. Hence

EG1ðQÞ �
fþð�1=bÞ

�m�1
�

fþðs=bÞ

max1�i�m�1
Pm�1

j¼1 jdijj
:

This shows that (13) holds. g

COROLLARY 2 Under the same conditions as in Theorem 3, we have

1

4
HG1ðAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HG2

1ðAÞ þ
4kck2

d2
ðm�1Þðm�1Þ

s !
� EG1ðQÞ: ð14Þ

Proof Since A2R
n�m is a hub-dominant matrix, the submatrix D of Q in (2) is

diagonally dominated. Hence s� 0 and

fþðs=bÞ � fþð0Þ ¼
1

2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4kzk2

q	 

¼

1

2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4kck2

q	 

:

The fact kzk¼kck is used above. Since D is a diagonally dominated matrix, we get

max
1�i�m�1

Xm�1
j¼1

jdijj � max
1�i�m�1

2dii ¼ 2dðm�1Þðm�1Þ:

Hence,

fþðs=bÞ

max1�i�m�1
Pm�1

j¼1 dij
�

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4kck2

p
4dðm�1Þðm�1Þ

¼
1

4
HG1ðAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HG2

1ðAÞ þ
4kck2

d 2
ðm�1Þðm�1Þ

s !
:

g

Because

1

4
HG1ðAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HG2

1ðAÞ þ
4kck2

d 2
ðm�1Þðm�1Þ

s !
�

1

2
HG1ðAÞ,

thus, Theorem 3 provides a better lower bound for EG1(Q) than Theorem 1.
Next we turn to give an estimate of the upper bound of EG1(Q).

THEOREM 4 Let A2R
n�m be a hub-dominant matrix having a1, a2, . . . , am as its

columns with ka1k� ka2k� � � � � kamk. Let Q¼AtA2R
m�m in (2) be the correspond-

ing system matrix. Then

EG1ðQÞ �
minfbþ s1, fþðs1=bÞg

maxfs2, f�ðs3=bÞg
, ð15Þ

where

s1 :¼ max
1�i�m�1

Xm�1
j¼1

jdijj,

s2 :¼ max
1�i5j�m�1

1

2
ðdii þ djjÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdii � djjÞ

2
þ 4d 2

ij

q	 

,

s3 :¼ max
1�i5j�m�1

1

2
ðdii þ djjÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdii � djjÞ

2
þ 4d 2

ij

q	 

:
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Proof Since EG1(Q) is the ratio of �m(Q) and �m�1(Q), we need to give an upper

bound for �m(Q) and an lower bound for �m�1(Q), respectively.
By Lemma 1, we know �m(Q)� fþ(�m�1/b). By Lemma 6, we get �m�1� s1.

The monotonically increasing property of fþ implies

�mðQÞ � fþðs1=bÞ: ð16Þ

On the other hand, by Lemma 7 we obtain another upper bound

�mðQÞ � bþ s1: ð17Þ

Hence, combining (16) and (17) together yields

�mðQÞ � minfbþ s1, fþðs1=bÞg: ð18Þ

Now, we develop the lower bound for �m�1(Q). From Lemmas 3–5, and the

comments following Lemma 4, we know that

�m�2 � s2 and �m�1 � s3: ð19Þ

By Lemma 1 and the monotonically increasing property of f�, we have

�m�1ðQÞ � maxf�m�2, f�ð�m�1=bÞg � maxfs2, f�ðs3=bÞg: ð20Þ

This completes the proof. g

Remark 4 When A is a hub matrix, Equation (9) implies that min{bþ s1,

fþ(s1/b)}¼ fþ(s1/b). Therefore, the upper bound for EG1(Q) given by Theorem 4

is the same as the one given by Theorem 2.

COROLLARY 3 Under the same conditions as in Theorem 4, the upper bound for

EG1(Q) provided by Theorem 4 is tighter than the one given by Theorem 1.

Proof By Lemma 5, we have

dðm�2Þðm�2Þ � �m�2 � s2, ð21Þ

where �i :¼
Pm�1

j¼1, j6¼i jdijj is the sum of the magnitudes of the off-diagonal elements of

the i-th row of D in (2). The difference d(m�2)(m�2)� �m�2 in above inequality should

be understood as the second largest number among d11� �1, d22� �2, . . . ,

d(m�1)(m�1)� �m�1.
Next, we will show that

s1 � dðm�1Þðm�1Þ þ
Xm�2
j¼1

�j: ð22Þ

We consider two different cases. In the first case, we assume that
Pm�1

j¼1 jdðm�1Þ jj ¼ s1.

Then

s1 ¼ dðm�1Þðm�1Þ þ
Xm�2
j¼1

jdðm�1Þ jj ¼ dðm�1Þðm�1Þ þ
Xm�2
j¼1

jdj ðm�1Þj � dðm�1Þðm�1Þ þ
Xm�2
j¼1

�j:
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In the second case, we assume that there is an integer i0 between 1 and m� 2 such

that
Pm�1

j¼1 jdi0jj ¼ s1. Hence,

s1¼ di0i0 þ
Xm�2
j¼1

j6¼i0

jdi0jjþ jdi0ðm�1Þj � dðm�1Þðm�1Þ þ
Xm�2
j¼1

j6¼i0

jdji0 jþ�i0 � dðm�1Þðm�1Þ þ
Xm�2
j¼1

j6¼i0

�jþ�i0 :

Therefore, (22) holds.
By (21) and (22), we have

minfbþ s1, fþðs1=bÞg

maxfs2, f�ðs3=bÞg
�

bþ s1
s2
�

bþ dðm�1Þðm�1Þ þ
Pm�2

j¼1 �j

dðm�2Þðm�2Þ � �m�2
:

This implies that the upper bound for EG1(Q) given by Theorem 4 is tighter than

the one given by Theorem 2. g

5. Hub-dominant matrices from equiangular tight frames

In this section, we focus on designing a class of hub-dominant matrices. We begin the

discussion from hub matrices.
Let A¼ [a1 a2 � � � am] be a hub matrix with am as its hub column. By the definition

of hub matrices,
Pm�1

i¼1 jhaj, aiij ¼ kaj k
2 for j¼ 1, . . . ,m� 1, i.e. �¼ �¼ 1 in (1).

We ask whether we can construct hub-dominant matrices satisfying the following

properties:

Xm�1
i¼1

jhaj, aiij ¼ �kaj k
2, for j ¼ 1, . . . ,m� 1, ð23Þ

where 15�� 2. The answer to this question is yes. We can construct a class of such

hub-dominant matrices from equiangular tight frames. The definition of equiangular

tight frames is given as follows.

Definition 3 The set of unit vectors {v1, v2, . . . , vN}, where vi2R
s, is called an

equiangular tight frame (ETF) if it satisfies two conditions: (i) For some

nonnegative 	, we have jhvk, vjij¼ 	 when 1� k5j�N and (ii)
PN

k¼1 vkv
t
k ¼

N
s Id,

when Id is the identity matrix in R
s�s.

We remark that the first condition indicates the vectors in the set being

equiangular while the second condition indicates the vectors generating a tight

frame, that is (see, e.g. [8]),

v ¼
s

N

XN
k¼1

hv, vkivk for all v2R
s: ð24Þ

Equiangular tight frames have been studied recently and have found applications in

communications and coding theory (see, e.g. [9–12]).
Immediately, the definitions of hub-dominant matrix and ETF lead to the

following results.
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PROPOSITION 1 Fix m� 3 and let A¼ [a1 a2 � � � am] be a hub-dominant matrix, where

ai2R
n for 1� i�m. If the collection of non-hub columns a1, a2, . . . , am�1 of A forms

an ETF, then (i) kamk� 1; (ii) �¼ (m� 2)	þ 1, where � is the constant in (23) and

	¼ jhai, ajij for all 1� i5j�m� 1 and (iii) 	 � 1
m�2.

We are particularly interested in the case where �¼ 2, i.e. 	 ¼ 1
m�2, under the

conditions of Proposition 1. Mercedes-Benz systems, a special type of ETFs, satisfy

this additional requirement.
An ETF {b1, b2, . . . , bnþ1} in R

n is called a Mercedes-Benz system if

hbk, bji ¼ �
1

n
for k 6¼ j:

LEMMA 8 Let {b1, b2, . . . , bnþ1} in R
n be a Mercedes-Benz system. Then

Xnþ1
i¼1

bi ¼ 0:

Proof For every 1� j� nþ 1

Xnþ1
i¼1

bi, bj

* +
¼ hbj, bji þ

Xnþ1
i¼1
i6¼j

bi, bj

* +
¼ 1þ

Xnþ1
i¼1
i6¼j

hbi, bji ¼ 1�
n

n
¼ 0:

By the second condition in the definition of an ETF, we have

Xnþ1
i¼1

bi ¼
n

nþ 1

Xnþ1
j¼1

Xnþ1
i¼1

bi, bj

* +
bj ¼ 0:

This completes the proof. g

We remark that the concrete constructions of Mercedes-Benz systems are

discussed in [13].

LEMMA 9 Fix m� 3 and let A¼ [a1 a2 � � � am]2R
(m�2)�m be a hub-dominant matrix

with am as its hub column. Let Q in (2) be the system matrix associated with A. If the

set of the non-hub columns a1, a2, . . . , am�1 of A forms a Mercedes-Benz system, then

D2R
(m�1)�(m�1), a submatrix of Q in (2), has a form of

D ¼
m� 1

m� 2
Id�

1

m� 2
eet, ð25Þ

where e :¼ [1, 1, . . . , 1]t2R
m�1. Further, the eigenvalues of D are 0 (simple) and m�1

m�2

with multiplicity m� 2.

Proof Since the set of the non-hub columns a1, a2, . . . , am�1 of A forms a

Mercedes-Benz system, then dij, the (i, j)-th entry of D is

dij ¼ hai, aji ¼
1 if i ¼ j;
� 1

m�2 if i 6¼ j.

�

It leads to (25).
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Since 1
m�2 ee

t is a rank-1 matrix and has m�1
m�2 as its only non-zero eigenvalue with e

as the corresponding eigenvector, hence the eigenvalues of D are 0 (simple) and m�1
m�2

with multiplicity m� 2. g

THEOREM 5 Fix m� 3 and let A¼ [a1 a2 � � � am]2R
(m�2)�m be a hub-dominant matrix

with am as its hub column. Let Q in (2) be the system matrix associated with A. If the

set of the non-hub columns a1, a2, . . . , am�1 of A forms a Mercedes-Benz system, then

the eigenvalues of Q are 0 with multiplicity 2, m�1
m�2 with multiplicity m� 3, and bþ m�1

m�2

(simple).

Proof By Lemma 9, there exists an orthogonal matrix U2R
(m�1)�(m�1) such that

D ¼ Ut�U, where � ¼ diag 0,
m� 1

m� 2
, . . . ,

m� 1

m� 2

	 

:

Many orthogonal matrices U can serve this purpose. Here we simply choose U to be

the (m� 1)� (m� 1) DCT-II matrix whose first row is 1ffiffiffiffiffiffiffi
m�1
p e (see [14]). With the help

of U, we have

� z
zt b

� �
¼

U
1

� �
D c
ct b

� �
Ut

1

� �
,

where b¼kamk
2, ct¼ [ham, a1i ham, a2i � � � ham, am�1i] and z¼Uc. Write z¼

[z1 z2 � � � zm�1]. Then, by Lemma 8,

z1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

m� 1
p etc ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p

Xm�1
i¼1

ham, aii ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

m� 1
p am,

Xm�1
i¼1

ai

* +
¼ 0:

By (24),

kzk2 ¼ kUck2 ¼ kck2 ¼
m� 1

m� 2
kamk

2 ¼
m� 1

m� 2
b: ð26Þ

Collecting all these results together, we get

det �Id�
� z

zt b

� �	 

¼ � ��

m� 1

m� 2

	 
m�2

ð�� bÞ � � ��
m� 1

m� 2

	 
m�3

kzk2

¼ �2 ��
m� 1

m� 2

	 
m�3

�� b�
m� 1

m� 2

	 

:

This indicates that 0 with multiplicity 2, m�1
m�2 with multiplicity m� 3 and bþ m�1

m�2

(simple) are the eigenvalues of Q. This completes the proof. g

Under the conditions of Theorem 5, we have

EG1ðQÞ ¼ 1þ
m� 2

m� 1
b:

For a fixed b (i.e. a fixed hub column), EG1(Q) increases when the number of

non-hub columns increase and EG1(Q) is bounded by 1þ b. For a fixed number

of non-hub columns, EG1(Q) is a linear function of b with the slope m�2
m�1.

From Theorem 1, the lower bound of EG1(Q) is 1
2 b. However, the upper bound

cannot be applied because d(m�2)(m�2)� �m�2¼ 0.
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By a simple calculation, we know that

s ¼ 0, s1 ¼ 2, s2 ¼
m� 3

m� 2
, s3 ¼

m� 1

m� 2
,

where s, s1, s2 and s3, are defined in Theorems 3 and 4. By using (26) and the
definition of f�, we have

fþðsÞ ¼
1

2
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ

4ðm� 1Þ

m� 2
b

r !
, fþðs1=bÞ � bþ s1, f�ðs3=bÞ ¼ 0:

Then, the lower and upper bounds for EG1(Q) given by Theorems 3 and 4 are
the following:

1

4
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ

4ðm� 1Þ

m� 2
b

r !
� EG1ðQÞ �

m� 2

m� 3

	 

ð2þ bÞ:

6. Conclusion

We have developed improved bounds for the eigengaps of the system matrices
associated with hub-dominant matrices. It would be interested in studying the
eigenvectors of the system matrices in the future research. Extension of the current
results to multi-hub matrices (i.e. two or more hub columns) will be studied as well.
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